Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Clin Invest ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662453

ABSTRACT

Neuroinflammation is a recognized complication of immunotherapeutic approaches such as immune checkpoint inhibitor treatment, chimeric antigen receptor therapy, and graft versus host disease (GVHD) occurring after allogeneic hematopoietic stem cell transplantation. While T cells and inflammatory cytokines play a role in this process, the precise interplay between the adaptive and innate arms of the immune system that propagates inflammation in the central nervous system remains incompletely understood. Using a murine model of GVHD, we demonstrate that type 2 cannabinoid receptor (CB2R) signaling plays a critical role in the pathophysiology of neuroinflammation. In these studies, we identify that CB2R expression on microglial cells induces an activated inflammatory phenotype which potentiates the accumulation of donor-derived proinflammatory T cells, regulates chemokine gene regulatory networks, and promotes neuronal cell death. Pharmacological targeting of this receptor with a brain penetrant CB2R inverse agonist/antagonist selectively reduces neuroinflammation without deleteriously affecting systemic GVHD severity. Thus, these findings delineate a therapeutically targetable neuroinflammatory pathway and has implications for the attenuation of neurotoxicity after GVHD and potentially other T cell-based immunotherapeutic approaches.

2.
Cell Rep Med ; 5(3): 101469, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38508137

ABSTRACT

Fibrolamellar carcinoma (FLC) is a liver tumor with a high mortality burden and few treatment options. A promising therapeutic vulnerability in FLC is its driver mutation, a conserved DNAJB1-PRKACA gene fusion that could be an ideal target neoantigen for immunotherapy. In this study, we aim to define endogenous CD8 T cell responses to this fusion in FLC patients and evaluate fusion-specific T cell receptors (TCRs) for use in cellular immunotherapies. We observe that fusion-specific CD8 T cells are rare and that FLC patient TCR repertoires lack large clusters of related TCR sequences characteristic of potent antigen-specific responses, potentially explaining why endogenous immune responses are insufficient to clear FLC tumors. Nevertheless, we define two functional fusion-specific TCRs, one of which has strong anti-tumor activity in vivo. Together, our results provide insights into the fragmented nature of neoantigen-specific repertoires in humans and indicate routes for clinical development of successful immunotherapies for FLC.


Subject(s)
Carcinoma, Hepatocellular , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/pathology , Cell- and Tissue-Based Therapy , HSP40 Heat-Shock Proteins/genetics , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/genetics
3.
Article in English | MEDLINE | ID: mdl-38083755

ABSTRACT

Immunotherapies have been proven to have significant therapeutic efficacy in the treatment of cancer. The last decade has seen adoptive cell therapies, such as chimeric antigen receptor T-cell (CART-cell) therapy, gain FDA approval against specific cancers. Additionally, there are numerous clinical trials ongoing investigating additional designs and targets. Nevertheless, despite the excitement and promising potential of CART-cell therapy, response rates to therapy vary greatly between studies, patients, and cancers. There remains an unmet need to develop computational frameworks that more accurately predict CART-cell function and clinical efficacy. Here we present a coarse-grained model simulated with logical rules that demonstrates the evolution of signaling signatures following the interaction between CART-cells and tumor cells and allows for in silico based prediction of CART-cell functionality prior to experimentation.Clinical Relevance- Analysis of CART-cell signaling signatures can inform future CAR receptor design and combination therapy approaches aimed at improving therapy response.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive , T-Lymphocytes , Neoplasms/therapy , Signal Transduction , Cell Communication
4.
Front Immunol ; 14: 1301100, 2023.
Article in English | MEDLINE | ID: mdl-38149253

ABSTRACT

Advancements in sequencing technologies and bioinformatics algorithms have expanded our ability to identify tumor-specific somatic mutation-derived antigens (neoantigens). While recent studies have shown neoantigens to be compelling targets for cancer immunotherapy due to their foreign nature and high immunogenicity, the need for increasingly accurate and cost-effective approaches to rapidly identify neoantigens remains a challenging task, but essential for successful cancer immunotherapy. Currently, gene expression analysis and algorithms for variant calling can be used to generate lists of mutational profiles across patients, but more care is needed to curate these lists and prioritize the candidate neoantigens most capable of inducing an immune response. A growing amount of evidence suggests that only a handful of somatic mutations predicted by mutational profiling approaches act as immunogenic neoantigens. Hence, unbiased screening of all candidate neoantigens predicted by Whole Genome Sequencing/Whole Exome Sequencing may be necessary to more comprehensively access the full spectrum of immunogenic neoepitopes. Once putative cancer neoantigens are identified, one of the largest bottlenecks in translating these neoantigens into actionable targets for cell-based therapies is identifying the cognate T cell receptors (TCRs) capable of recognizing these neoantigens. While many TCR-directed screening and validation assays have utilized bulk samples in the past, there has been a recent surge in the number of single-cell assays that provide a more granular understanding of the factors governing TCR-pMHC interactions. The goal of this review is to provide an overview of existing strategies to identify candidate neoantigens using genomics-based approaches and methods for assessing neoantigen immunogenicity. Additionally, applications, prospects, and limitations of some of the current single-cell technologies will be discussed. Finally, we will briefly summarize some of the recent models that have been used to predict TCR antigen specificity and analyze the TCR receptor repertoire.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Neoplasms/therapy , Antigens, Neoplasm/genetics , Receptors, Antigen, T-Cell/genetics , Mutation , Immunotherapy/methods
6.
bioRxiv ; 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37645843

ABSTRACT

Neuroinflammation is a recognized complication of immunotherapeutic approaches such as immune checkpoint inhibitor treatment, chimeric antigen receptor therapy, and graft versus host disease (GVHD) occurring after allogeneic hematopoietic stem cell transplantation. While T cells and inflammatory cytokines play a role in this process, the precise interplay between the adaptive and innate arms of the immune system that propagates inflammation in the central nervous system remains incompletely understood. Using a murine model of GVHD, we demonstrate that type 2 cannabinoid receptor (CB2R) signaling plays a critical role in the pathophysiology of neuroinflammation. In these studies, we identify that CB2R expression on microglial cells induces an activated inflammatory phenotype which potentiates the accumulation of donor-derived proinflammatory T cells, regulates chemokine gene regulatory networks, and promotes neuronal cell death. Pharmacological targeting of this receptor with a brain penetrant CB2R inverse agonist/antagonist selectively reduces neuroinflammation without deleteriously affecting systemic GVHD severity. Thus, these findings delineate a therapeutically targetable neuroinflammatory pathway and has implications for the attenuation of neurotoxicity after GVHD and potentially other T cell-based immunotherapeutic approaches.

7.
ArXiv ; 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36798455

ABSTRACT

Immunotherapies have been proven to have significant therapeutic efficacy in the treatment of cancer. The last decade has seen adoptive cell therapies, such as chimeric antigen receptor T-cell (CART-cell) therapy, gain FDA approval against specific cancers. Additionally, there are numerous clinical trials ongoing investigating additional designs and targets. Nevertheless, despite the excitement and promising potential of CART-cell therapy, response rates to therapy vary greatly between studies, patients, and cancers. There remains an unmet need to develop computational frameworks that more accurately predict CART-cell function and clinical efficacy. Here we present a coarse-grained model simulated with logical rules that demonstrates the evolution of signaling signatures following the interaction between CART-cells and tumor cells and allows for in silico based prediction of CART-cell functionality prior to experimentation.

8.
Sci Immunol ; 7(68): eabf6136, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35119937

ABSTRACT

The immune system undergoes a progressive functional remodeling with age. Understanding how age bias shapes antitumor immunity is essential in designing effective immunotherapies, especially for pediatric patients. Here, we explore antitumor CD8+ T cell responses generated in young (prepubescent) and adult (presenescent) mice. Using an MHCI-deficient tumor model, we observed that tumor-reactive CD8+ T cells expanded in young tumor-bearing (TB) mice acquired a terminally differentiated phenotype characterized by overexpression of inhibitory receptors and the transcription factor Tox1. Furthermore, tumor-infiltrating CD8+ T cells from young tumors yielded a poor cytokine response compared with CD8+ T cells infiltrating adult tumors. Young migratory dendritic cells (migDCs) from the draining lymph nodes (dLNs), and mononuclear phagocytic cells (MPCs) infiltrating young tumors, were more competent in capturing and cross-presenting tumor antigen, leading to enhanced priming of CD8+ T cells in dLNs and their subsequent terminal differentiation in the tumors. Single-cell transcriptional profiling of tumor-infiltrating MPCs demonstrated that young MPCs are polarized toward an inflammatory, effector phenotype. Consistent with our observations in young versus adult TB mice, analysis of immune infiltrates from pediatric solid tumors showed a correlation between tumor-infiltrating CD8+ T cells with an exhaustion phenotype and the frequency of PD-L1-expressing monocytes/macrophages. Collectively, these data indicate that a young tissue microenvironment contributes to the generation of an immune response skewed toward a less pliable terminal effector state, thus narrowing the window for immunotherapeutic interventions.


Subject(s)
Antigen Presentation/immunology , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Animals , Cell Differentiation/immunology , Cell Line, Tumor , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
9.
Blood Adv ; 5(20): 4219-4232, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34496010

ABSTRACT

Natural killer (NK) cells are involved in innate defense against viral infection and cancer. NK cells can be divided into subsets based on the ability of different receptors to bind to major histocompatibility (MHC) class 1 molecules, resulting in differential responses upon activation in a process called "licensing" or "arming." NK cells expressing receptors that bind self-MHC are considered licensed due to an augmented effector lytic function capability compared with unlicensed subsets. However, we demonstrated that unlicensed NK subsets instead positively regulate the adaptive T-cell response during viral infections that are related to localization and cytokine production. In this study, the differential effects of the two types of NK subsets were contingent on the environment in viral infection and hematopoietic stem cell transplantation (HSCT) models. Infection of mice with high-dose (HD) murine cytomegalovirus (MCMC) led to a loss of licensing-associated differences, as compared with mice with low-dose (LD) infection: the unlicensed NK subset no longer localized in lymph nodes (LNs), but instead remained at the site of infection. Similarly, the patterns observed during HD infection paralleled the phenotypes of both human and mouse NK cells in an HSCT setting where NK cells exhibit an activated phenotype. However, in contrast to the effects of subset depletion in T-cell replete models, the licensed NK cell subsets still dominated antiviral responses after HSCT. Overall, our results highlight the intricate tuning of NK cells and how it affects overall immune responses with regard to licensing patterns and their dependency on the level of stimulation and activation status.


Subject(s)
Hematopoietic Stem Cell Transplantation , Muromegalovirus , Animals , Humans , Killer Cells, Natural , Mice , Mice, Inbred C57BL
10.
Blood ; 137(4): 471-484, 2021 01 28.
Article in English | MEDLINE | ID: mdl-32881995

ABSTRACT

Blinatumomab, a bispecific antibody that directs CD3+ T cells to CD19+ tumor cells, shows variable efficacy in B-progenitor acute lymphoblastic leukemia (B-ALL). To determine tumor-intrinsic and -extrinsic determinants of response, we studied 44 adults with relapsed or refractory B-ALL (including 2 minimal residual disease positive) treated with blinatumomab using bulk tumor and single-cell sequencing. The overall response rate in patients with hematological disease was 55%, with a high response rate in those with CRLF2-rearranged Philadelphia chromosome-like ALL (12 [75%] of 16). Pretreatment samples of responders exhibited a tumor-intrinsic transcriptomic signature of heightened immune response. Multiple mechanisms resulted in loss of CD19 expression, including CD19 mutations, CD19-mutant allele-specific expression, low CD19 RNA expression, and mutations in CD19 signaling complex member CD81. Patients with low hypodiploid ALL were prone to CD19- relapse resulting from aneuploidy-mediated loss of the nonmutated CD19 allele. Increased expression of a CD19 isoform with intraexonic splicing of exon 2, CD19 ex2part, at baseline or during therapy was associated with treatment failure. These analyses demonstrate both tumor-intrinsic and -extrinsic factors influence blinatumomab response. We show that CD19 mutations are commonly detected in CD19- relapse during blinatumomab treatment. Identification of the CD19 ex2part splice variant represents a new biomarker predictive of blinatumomab therapy failure.


Subject(s)
Antibodies, Bispecific/therapeutic use , Antigens, CD19/genetics , Antigens, Neoplasm/genetics , Antineoplastic Agents, Immunological/therapeutic use , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Salvage Therapy , T-Lymphocyte Subsets/drug effects , Adolescent , Adult , Aged , Amino Acid Sequence , Aneuploidy , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Antigens, CD19/biosynthesis , Antigens, CD19/immunology , Antigens, Neoplasm/biosynthesis , Antigens, Neoplasm/immunology , Antineoplastic Agents, Immunological/immunology , Antineoplastic Agents, Immunological/pharmacology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Cytotoxicity, Immunologic/drug effects , Drug Resistance, Neoplasm/physiology , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Mutation , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Neoplasm/biosynthesis , RNA, Neoplasm/genetics , Recurrence , Retrospective Studies , Sequence Alignment , Sequence Homology, Amino Acid , Single-Cell Analysis , T-Lymphocyte Subsets/immunology , Young Adult
11.
Sci Transl Med ; 11(498)2019 06 26.
Article in English | MEDLINE | ID: mdl-31243155

ABSTRACT

Cancer arises from the accumulation of genetic alterations, which can lead to the production of mutant proteins not expressed by normal cells. These mutant proteins can be processed and presented on the cell surface by major histocompatibility complex molecules as neoepitopes, allowing CD8+ T cells to mount responses against them. For solid tumors, only an average 2% of neoepitopes predicted by algorithms have detectable endogenous antitumor T cell responses. This suggests that low mutation burden tumors, which include many pediatric tumors, are poorly immunogenic. Here, we report that pediatric patients with acute lymphoblastic leukemia (ALL) have tumor-associated neoepitope-specific CD8+ T cells, responding to 86% of tested neoantigens and recognizing 68% of the tested neoepitopes. These responses include a public neoantigen from the ETV6-RUNX1 fusion that is targeted in seven of nine tested patients. We characterized phenotypic and transcriptional profiles of CD8+ tumor-infiltrating lymphocytes (TILs) at the single-cell level and found a heterogeneous population that included highly functional effectors. Moreover, we observed immunodominance hierarchies among the CD8+ TILs restricted to one or two putative neoepitopes. Our results indicate that robust antitumor immune responses are induced in pediatric ALL despite their low mutation burdens and emphasize the importance of immunodominance in shaping cellular immune responses. Furthermore, these data suggest that pediatric cancers may be amenable to immunotherapies aimed at enhancing immune recognition of tumor-specific neoantigens.


Subject(s)
Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Antigen Presentation/immunology , Child , Genetic Heterogeneity , Humans , Immunodominant Epitopes/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Reproducibility of Results , Transcription, Genetic
12.
BMC Cancer ; 19(1): 253, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30898113

ABSTRACT

BACKGROUND: Despite its relatively low incidence, pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer deaths because of the aggressive growth/metastasis of the tumor, the lack of early symptoms, and the poor treatment options. Basic research to identify potential therapeutic targets for PDAC is greatly needed. METHODS: We used a negative-selection genome-wide CRISPR screen to identify essential genes in the PANC-1 human pancreatic carcinoma cell line. We validated the top hits with follow-up siRNA screens, using the HPNE, HPAF-II, AsPC-1, and Mia PaCa-2 cell lines. RESULTS: The PSMA6 gene was an identified candidate hit after the CRISPR screen, siRNA validation screen, and siRNA deconvolution screen. Spheroid formation assays and flow cytometry analysis showed that PSMA6 is critical for survival in many pancreatic ductal carcinoma cell models. Lastly, as PSMA6 protein is a proteosomal subunit of the 20S core complex, we showed that bortezomib, a proteasome inhibitor, was especially toxic in PANC-1 cells. CONCLUSIONS: Further study of PSMA6 and the proteasome subunit that it encodes, along with other hits identified in our CRISPR screens, may provide valuable insights into potential therapeutic targets for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Oncogenes/genetics , Pancreatic Neoplasms/genetics , Proteasome Endopeptidase Complex/genetics , Bortezomib/pharmacology , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genome, Human/genetics , Genomics/methods , Humans , Pancreas/pathology , Pancreatic Neoplasms/pathology , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/pharmacology , Proteasome Inhibitors/pharmacology , RNA, Small Interfering/genetics , Spheroids, Cellular
13.
Immunity ; 49(3): 531-544.e6, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30170813

ABSTRACT

Compared to adults, infants suffer higher rates of hospitalization, severe clinical complications, and mortality due to influenza infection. We found that γδ T cells protected neonatal mice against mortality during influenza infection. γδ T cell deficiency did not alter viral clearance or interferon-γ production. Instead, neonatal influenza infection induced the accumulation of interleukin-17A (IL-17A)-producing γδ T cells, which was associated with IL-33 production by lung epithelial cells. Neonates lacking IL-17A-expressing γδ T cells or Il33 had higher mortality upon influenza infection. γδ T cells and IL-33 promoted lung infiltration of group 2 innate lymphoid cells and regulatory T cells, resulting in increased amphiregulin secretion and tissue repair. In influenza-infected children, IL-17A, IL-33, and amphiregulin expression were correlated, and increased IL-17A levels in nasal aspirates were associated with better clinical outcomes. Our results indicate that γδ T cells are required in influenza-infected neonates to initiate protective immunity and mediate lung homeostasis.


Subject(s)
Influenza A virus/physiology , Influenza, Human/immunology , Interleukin-17/metabolism , Lung/immunology , Orthomyxoviridae Infections/immunology , T-Lymphocytes/immunology , Th2 Cells/immunology , Adult , Amphiregulin/metabolism , Animals , Cells, Cultured , Child , Humans , Immunity , Infant, Newborn , Interleukin-33/metabolism , Mice , Prognosis , Receptors, Antigen, T-Cell, gamma-delta/metabolism
14.
J Immunol ; 200(2): 392-399, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29311380

ABSTRACT

The successes of antitumor immuno-based therapies and the application of next-generation sequencing to mutation profiling have produced insights into the specific targets of antitumor T cells. Mutated proteins have tremendous potential as targets for interventions using autologous T cells or engineered cell therapies and may serve as important correlates of efficacy for immunoregulatory interventions including immune checkpoint blockade. As mutated self, tumors present an exceptional case for host immunity, which has primarily evolved in response to foreign pathogens. Tumor Ags' resemblance to self may limit immune recognition, but key features appear to be the same between antipathogen and antitumor responses. Determining which targets will make efficacious Ags and which responses might be elicited therapeutically are key questions for the field. Here we discuss current knowledge on antitumor specificity, the mutations that provide immunogenic targets, and how cross-reactivity and immunodominance may contribute to variation in immune responses among tumor types.


Subject(s)
Antigens, Neoplasm/immunology , Cytotoxicity, Immunologic , Immunity , Neoplasms/immunology , T-Lymphocytes/immunology , Animals , Disease Susceptibility , Humans , Immunologic Surveillance , Immunotherapy , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy , T-Cell Antigen Receptor Specificity , T-Lymphocytes/metabolism
15.
Sci Rep ; 7(1): 8138, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28811660

ABSTRACT

Muscle differentiation is a complex process in which muscle progenitor cells undergo determination and eventually cellular fusion. This process is heavily regulated by such master transcription factors as MYOD and members of the MEF2 family. Here, we show that the transcription factor ZNF148 plays a direct role in human muscle cell differentiation. Downregulation of ZNF148 drives the formation of a muscle phenotype with rapid expression of myosin heavy chain, even in proliferative conditions. This phenotype was most likely mediated by the robust and swift upregulation of MYOD and MEF2C.


Subject(s)
Cell Differentiation , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Muscle, Skeletal , Myoblasts/cytology , Myoblasts/metabolism , Transcription Factors/metabolism , Cell Differentiation/genetics , Cell Line , Cell Line, Transformed , DNA-Binding Proteins/genetics , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Muscle Development/genetics , Muscle, Skeletal/metabolism , MyoD Protein/genetics , MyoD Protein/metabolism , Phenotype , RNA, Small Interfering/genetics , Transcription Factors/genetics
16.
Nat Med ; 23(8): 975-983, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28714988

ABSTRACT

Previous studies have reported associations of IFITM3 SNP rs12252 with severe influenza, but evidence of association and the mechanism by which risk is conferred remain controversial. We prioritized SNPs in IFITM3 on the basis of putative biological function and identified rs34481144 in the 5' UTR. We found evidence of a new association of rs34481144 with severe influenza in three influenza-infected cohorts characterized by different levels of influenza illness severity. We determined a role for rs34481144 as an expression quantitative trait locus (eQTL) for IFITM3, with the risk allele associated with lower mRNA expression. The risk allele was found to have decreased IRF3 binding and increased CTCF binding in promoter-binding assays, and risk allele carriage diminished transcriptional correlations among IFITM3-neighboring genes, indicative of CTCF boundary activity. Furthermore, the risk allele disrupts a CpG site that undergoes differential methylation in CD8+ T cell subsets. Carriers of the risk allele had reduced numbers of CD8+ T cells in their airways during natural influenza infection, consistent with IFITM3 promoting accumulation of CD8+ T cells in airways and indicating that a critical function for IFITM3 may be to promote immune cell persistence at mucosal sites.Our study identifies a new regulator of IFITM3 expression that associates with CD8+ T cell levels in the airways and a spectrum of clinical outcomes.


Subject(s)
Influenza, Human/genetics , Interferon Regulatory Factor-3/metabolism , Membrane Proteins/genetics , Promoter Regions, Genetic/genetics , RNA-Binding Proteins/genetics , Repressor Proteins/metabolism , Alleles , Blotting, Western , CCCTC-Binding Factor , CD8-Positive T-Lymphocytes/immunology , DNA Methylation , Genetic Predisposition to Disease , Genotype , Humans , Influenza, Human/immunology , Membrane Proteins/immunology , Nasal Lavage Fluid/cytology , Polymorphism, Single Nucleotide , Quantitative Trait Loci , RNA-Binding Proteins/immunology , Severity of Illness Index
17.
JCI Insight ; 2(10)2017 May 18.
Article in English | MEDLINE | ID: mdl-28515356

ABSTRACT

Natural killer (NK) cells can be divided into phenotypic subsets based on expression of receptors that bind self-MHC-I molecules, a concept termed licensing or education. Here we show NK cell subsets with different migratory, effector, and immunoregulatory functions in dendritic cell and antigen (ag)-specific CD8+ T cell responses during influenza and murine cytomegalovirus infections. Shortly after infection, unlicensed NK cells localized in draining lymph nodes and produced GM-CSF, which correlated with the expansion and activation of dendritic cells, and resulted in greater and sustained ag-specific T cell responses. In contrast, licensed NK cells preferentially migrated to infected tissues and produced IFN-γ. Importantly, human NK cell subsets exhibited similar phenotypic characteristics. Collectively, our studies demonstrate a critical demarcation between the functions of licensed and unlicensed NK cell subsets, with the former functioning as the classical effector subset and the latter as the stimulator of adaptive immunity helping to prime immune responses.

18.
Trends Mol Med ; 22(12): 1000-1011, 2016 12.
Article in English | MEDLINE | ID: mdl-27825667

ABSTRACT

Prolonged exposure of CD8+ T cells to their cognate antigen can result in exhaustion of effector functions enabling the persistence of infected or transformed cells. Recent advances in strategies to rejuvenate host effector function using Immune Checkpoint Blockade have resulted in tremendous success towards the treatment of several cancers. However, it is unclear if T cell rejuvenation results in long-lived antitumor functions. Emerging evidence suggests that T cell exhaustion may also represent a significant impediment in sustaining long-lived antitumor activity by chimeric antigen receptor T cells. Here, we discuss current findings regarding transcriptional regulation during T cell exhaustion and address the hypothesis that epigenetics may be a potential barrier to achieving the maximum benefit of T cell-based immunotherapies.


Subject(s)
Immunotherapy/methods , Neoplasms/therapy , T-Lymphocytes/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/transplantation , DNA Methylation , Epigenesis, Genetic , Genetic Engineering/methods , Humans , Immunotherapy, Adoptive/methods , Neoplasms/genetics , Neoplasms/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/transplantation
19.
Clin Cancer Res ; 22(17): 4328-40, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-26979392

ABSTRACT

PURPOSE: Previous studies demonstrate that intratumoral CpG immunotherapy in combination with radiotherapy acts as an in-situ vaccine inducing antitumor immune responses capable of eradicating systemic disease. Unfortunately, most patients fail to respond. We hypothesized that immunotherapy can paradoxically upregulate immunosuppressive pathways, a phenomenon we term "rebound immune suppression," limiting clinical responses. We further hypothesized that the immunosuppressive enzyme indolamine-2,3-dioxygenase (IDO) is a mechanism of rebound immune suppression and that IDO blockade would improve immunotherapy efficacy. EXPERIMENTAL DESIGN: We examined the efficacy and immunologic effects of a novel triple therapy consisting of local radiotherapy, intratumoral CpG, and systemic IDO blockade in murine models and a pilot canine clinical trial. RESULTS: In murine models, we observed marked increase in intratumoral IDO expression after treatment with radiotherapy, CpG, or other immunotherapies. The addition of IDO blockade to radiotherapy + CpG decreased IDO activity, reduced tumor growth, and reduced immunosuppressive factors, such as regulatory T cells in the tumor microenvironment. This triple combination induced systemic antitumor effects, decreasing metastases, and improving survival in a CD8(+) T-cell-dependent manner. We evaluated this novel triple therapy in a canine clinical trial, because spontaneous canine malignancies closely reflect human cancer. Mirroring our mouse studies, the therapy was well tolerated, reduced intratumoral immunosuppression, and induced robust systemic antitumor effects. CONCLUSIONS: These results suggest that IDO maintains immune suppression in the tumor after therapy, and IDO blockade promotes a local antitumor immune response with systemic consequences. The efficacy and limited toxicity of this strategy are attractive for clinical translation. Clin Cancer Res; 22(17); 4328-40. ©2016 AACR.


Subject(s)
Immunomodulation/drug effects , Immunosuppression Therapy , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Neoplasms/immunology , Neoplasms/metabolism , Animals , Disease Models, Animal , Dogs , Enzyme Activation , Female , Melanoma, Experimental , Mice , Neoplasms/mortality , Neoplasms/therapy , Oligodeoxyribonucleotides/administration & dosage , Radioimmunotherapy/methods , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Treatment Outcome , Tumor Microenvironment/immunology
20.
Curr Protoc Immunol ; 110: 14.37.1-14.37.14, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26237009

ABSTRACT

Natural killer (NK) cells are large granular lymphocytes of the innate immune system, responsible for direct targeting and killing of both virally infected and transformed cells. NK cells rapidly recognize and respond to abnormal cells in the absence of prior sensitization due to their wide array of germline-encoded inhibitory and activating receptors, which differs from the receptor diversity found in B and T lymphocytes that is due to the use of recombination-activation gene (RAG) enzymes. Although NK cells have traditionally been described as natural killers that provide a first line of defense prior to the induction of adaptive immunity, a more complex view of NK cells is beginning to emerge, indicating they may also function in various immunoregulatory roles and have the capacity to shape adaptive immune responses. With the growing appreciation for the diverse functions of NK cells, and recent technological advancements that allow for a more in-depth understanding of NK cell biology, we can now begin to explore new ways to manipulate NK cells to increase their clinical utility. In this overview unit, we introduce the reader to various aspects of NK cell biology by reviewing topics ranging from NK cell diversity and function, mouse models, and the roles of NK cells in health and disease, to potential clinical applications. © 2015 by John Wiley & Sons, Inc.


Subject(s)
Disease Models, Animal , Immunotherapy , Killer Cells, Natural/physiology , Animals , Cell Differentiation , Disease Susceptibility , Humans , Immunity , Immunotherapy/methods , Killer Cells, Natural/cytology , Lymphocyte Subsets/cytology , Lymphocyte Subsets/physiology , Mice , Mice, Knockout , Mice, Transgenic , Phenotype , Receptors, Natural Killer Cell/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...